
Rao Standardization

Jari Oksanen

October 26, 2024

1 Introduction

Rao (1982) introduced perhaps the most often used
measure of functional or phylogenetic diversity,
Rao quadratic entropy. The quadratic entropy is
a generalization of Simpson or Gini-Simpson in-
dex of diversity that takes into account the non-
independence of species. If species are all function-
ally (in traits) or phylogenetically related, the com-
munity is less diverse than a community with dis-
similar species. The dissimilarity measure weights
taxa by their similarity, and two communities shar-
ing no species can be similar to each other if the
species are similar in traits or related in traits.
There are several R functions that implement

Rao's quadratic diversity and some that also imple-
ment the related dissimilarity. Perhaps the most
well-known are those in the ade4 package (func-
tions divc and disc, both by Sandrine Pavoine). I
have also implemented them as qrao and distrao in
natto. These are single-purpose functions to per-
form exactly this task. This documents inspects
the possibility of implementing Rao's measures as
a general standardization of the community data.
This would allow implementing Rao's method with
minimal intrusion in vegan diversity and dissimi-
larity functions, and also in general data analysis,
such as in redundancy analysis.

2 Rao's Diversity and Distance

Rao (1982) de�ned quadratic entropy H for a com-
munity as

H =

S∑
j=1

S∑
k=1

pjpkdjk , (1)

where p is the proportion of species j and k of
the community, and S is the number of species, so
that

∑S
i=1 pi = 1, and d is the dissimilarity among

species. In this assay we only study the case where
dissimilarities are bounded in (0, 1) where 1 means
completely di�erent and independent species, and
0 means identical species. The dissimilarity ma-
trix has zero diagonal: species is always identical
to itself and does not contribute to the quadratic
entropy. If all species are completely and equally
di�erent, matrix D = {djk} has zero diagonal and
the o�-diagonal elements are ones. In that case
Simpson-Gini diversity index is 1−H.
Rao (1982) de�ned a dissimilarity index that was

based on eq. 1, but the species indexed there as j
and k come from di�erent communities, and we
have their cross product. With this model, the
quadratic entropies (diversities) for communities i
and j are denoted as Hi and Hj and their cross
product as Hij . The distance between two commu-
nities is de�ned as (Rao, 1982, eq. 2.1.3)

δij = Hij − 1
2 (Hi +Hj) . (2)

Rao (1982) calls this Jensen distance, and we see
later that it is actually one half of squared Eu-
clidean distance.
Rao (1982) does not use matrix notation, but

matrix H = {Hij} can be found as

H = PDP′ , (3)

whereP is a matrix of proportions of species in sites
and D is the among species dissimilarity matrix.
The diagonal of H gives the quadratic entropies
Hi and Hj , and the o�-diagonal elements the cross
products Hij .

3 Incorporation of Rao's

Method in vegan

In this section we study how to implement Rao's
method in vegan in a non-intrusive way. We study
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speci�cally vegan function designdist that is the
most �exible and con�gurable dissimilarity func-
tion in vegan. Dissimilarity functions need both
the Rao entropy and cross product terms, or diag-
onal and o�-diagonal elements of H (eq. 2). If we
can implement dissimilarity measures, we can also
implement Rao entropy.

In designdist we make a di�erence between
terms (Table 1) and formulae (Table 2) using these
terms. Terms can be binary, quadratic or �rst de-
gree terms using minima between variables. The
quadratic terms are estimated through matrix mul-
tiplication XX′. With binary data, the multipli-
cation gives the binary parameters of number of
species in each community in the diagonal, and
the numbers of shared species between communi-
ties in the o�-diagonal elements. We can incor-
porate species dissimilarities in matrix multipli-
cation similarly as in eq. 3. However, for stan-
dard dissimilarity measures we must have similar-
ities R = 1 − D instead of dissimilarities. For
D bounded in (0, 1), the diagonal elements of R
are 1, and o�-diagonal elements are complements
of dissimilarity {rjk} = {1 − djk}, and Rao style
quadratic terms will be given by

Q = PRP′ , (4)

and Q = 1 −H. The Jensen distance of eq. 2 will
be expressed in the form given in Table 2, e.g., with
reversal of signs. The complement 1−qi of the cross
product matrix is Rao's quadratic entropy, and-
Simpson's diversity evaluated with eq. 4 is Rao's
quadratic entropy.

The form of eq. 4 cannot be applied for the min-
imum terms (Table 1), and this would limit apply-
ing Rao methods to quadratic and binary terms.
However, if we standardize data by

Z = PR1/2 , (5)

then Q = ZZ′. Matrix Z has same rows and
columns as data matrix P, and it can be used to
estimate the minimum terms of Table 1.

Matrix square root is not square root of its el-
ements D ̸= {

√
djk}, but it is de�ned by matrix

multiplication D1/2D1/2 = D. The matrix square
root is easiest to �nd via eigen decomposition: If

R = UΛU′ (6)

then

R1/2 = UΛ1/2U′ (7)

where U are orthonormal eigenvectors and Λ is
the diagonal matrix of eigenvalues, and Λ1/2 =
diag(

√
λi). For real valued matrix squareroot, all

eigenvalues must be non-negative and the matrix
R must be positive semide�nite. This is true of all
correlation and covariance matrices, and it seems
to be true of R = 1 − D when D is Euclidean,
or eigenvalues of − 1

2D̄
2 are non-negative (Gower,

1966), where D̄ is the double-centred dissimilar-
ity matrix. This is the same condition as for valid
dissimilarities in Rao's quadratic entropy (Pavoine
et al., 2005).
I used notation R for similarities, because they

are correlation-like and matrix takes the role of cor-
relation structure in linear modelling (Pinheiro and
Bates, 2000).

4 Implementation and Proof of

the Concept

In this section I give the implementation of Rao
standardization (eq. 5) and demonstrate that stan-
dardized data can be used to �nd Rao's quadratic
entropy as Simpson diversity of standardized data,
and Jensen distance from the Euclidean distance of
standardized data.
Rao's quadratic entropy is estimated with func-

tion qrao and Rao's distance with distrao, both
in the natto package. For other analyses I use
function in base R and vegan package. I analyse
Terschelling dune meadow vegetation, and I use co-
alescence ages from inferred phylogeny for among
species dissimilarities (Fig. 1). The phylogeny is
an ultrametric tree which guarantees that D is Eu-
clidean and R positive semide�nite (Pavoine et al.,
2005).
Function for Rao standardization function is

raostand <-
function (x, d, propx = TRUE, dmax)
{

TOL <- sqrt(.Machine$double.eps)
x <- as.matrix(x)
if (propx)

x <- decostand(x, "tot")
dn <- attr(x, "dimnames")
d <- as.dist(d)
if (anyNA(d))
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Table 1: Terms used in de�ning formulae for dissimilarity functions.

Binary terms Quadratic terms Minimum terms

J No. of shared species
∑S

i=1 xijxik

∑S
i=1 min(xij , xik)

A No. of species in j
∑S

i=1 x
2
ij

∑S
i=1 xij

B No. of species in k
∑S

i=1 x
2
ik

∑S
i=1 xik

Table 2: Formulae and common names for some popular dissimilarity measures using terms de�ned in
Table 1.

Binary terms Quadratic terms Minimum terms
A+B − 2J No. of di�erent species Squared Euclidean Manhattan
1
2 (A+B)− J No name Jensen No name

A+B−2J
A+B Sørensen No name Bray-Curtis

A+B−2J
A+B−J Jaccard Similarity Ratio Quantitative Jaccard

1− J√
AB

Ochiai Cosine complement No name
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Figure 1: Dated phylogenetic tree of species in
Dutch Dune meadows

stop("missing values are not accepted")
if (!missing(dmax)) {

d <- d/dmax
if (max(d) > 1)

d[d > 1] <- 1
}
else if (max(d) > 1)

d <- d/max(d)
d <- as.matrix(d)
d <- 1 - d
if (any(abs(diag(d) - 1) > TOL))

stop("'d' is not a valid dissimilarity object")
e <- eigen(d)
if (any(e$values < -TOL))
stop("dissimilarities 'd' do not define Euclidean transformation")

k <- e$values > TOL
vec <- e$vectors[, k, drop = FALSE]
ev <- e$values[k]
d <- vec %*% (sqrt(ev) * t(vec))
x <- x %*% d
if (any(abs(x) < TOL))

x[abs(x) < TOL] <- 0
attr(x, "dimnames") <- dn
x

}

Most of the functions take care that species dis-
tances are bounded in (0, 1), and in diversity cal-
culations, row sums are 1. However, we are explicit
here and take care of this manually:

D <- dune.phylodis/max(dune.phylodis)
P <- as.matrix(decostand(dune, "tot"))
Z <- raostand(P, D)
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The standardized matrix Z = PR1/2 has the fol-
lowing properties:
Standardization was applied to matrix P where

each row sums up to unity. The Simpson index can
be found directly from

tol <- sqrt(.Machine$double.eps)
all(abs(1 - rowSums(P^2) -

diversity(dune, "simpson")) < tol)

## [1] TRUE

Rao's quadratic entropy can be found from Z
similarly as the Simpson index:

1−
S∑

j=1

z2i =

S∑
j=1

S∑
k=1

pjpkdjk (8)

all(abs(1 - rowSums(Z^2) - qrao(dune, D)) < tol)

## [1] TRUE

Alternatively, Rao's quadratic entropy can be
found from the crossproduct of standardized data
Z:

1− diag(ZZ′) =

S∑
j=1

S∑
k=1

pjpkdjk (9)

all(abs(1 - diag(tcrossprod(Z)) -
qrao(dune, D)) < tol)

## [1] TRUE

The Jensen distances δ (eq. 2) can be found from
the elements {gij} = G = ZZ′ with reversal of
signs

1
2 (gii + gjj)− gij = Hij − 1

2 (Hi +Hj) (10)

and the Eulidean distances of Z are (2δij)
1/2:

all(abs(distrao(dune, D) - dist(Z)^2/2) < tol)

## [1] TRUE

All postulated equalities were true which shows
that the suggested standardization indeed works.
We can add Rao's method to any vegan function
with minimal changes in the code. In dissimilar-
ity functions (vegdist, designdist) the input data
must be tranformed with raostand, but the data

17 5 7 10 2 4 13 9 8 12 1 3 16 6 11 19 18 14 15 20

Callcusp
Bracruta
Ranuflam
Salirepe
Comapalu
Vicilath
Trifrepe
Trifprat
Empenigr
Hyporadi
Scorautu
Bellpere
Achimill
Cirsarve
Planlanc
Sagiproc
Chenalbu
Rumeacet
Eleopalu
Juncarti
Juncbufo
Lolipere
Airaprae
Agrostol
Anthodor
Alopgeni
Poaprat
Poatriv
Elymrepe
Bromhord

Figure 2: Data table ordered by species phylogeny
and clustering based on phylogenetic Bray-Curtis
dissimilarity

need not have unit row totals. This allows using
the Rao method also with minimum terms, such
as with the popular Bray-Curtis and Jaccard in-
dices. It is possible to add Rao's quadratic entropy
and its species equivalent into diversity by apply-
ing raostand after transforming rows to unit totals.
However, the standardization does work with Shan-
non index.

5 Extension and Example

In this section we apply Rao standardization for
analyses based on phylogenetic dissimilarities. The
data can be tabulated using clustering based on
phylogenetic Bray-Curtis dissimilarity (Fig. 2):

tabasco(dune, hclust(vegdist(Z)), hclust(D))

Unconstrained ordination based on phylogenetic
Bray-Curtis ordination can be performed with
NMDS (Fig. 3):

ord <- metaMDS(Z, trace=FALSE)
ord

##
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Figure 3: NMDS based on phylogenetic Bray-
Curtis dissimilarity

## Call:
## metaMDS(comm = Z, trace = FALSE)
##
## global Multidimensional Scaling using monoMDS
##
## Data: Z
## Distance: bray
##
## Dimensions: 2
## Stress: 0.05941756
## Stress type 1, weak ties
## Best solution was repeated 3 times in 20 tries
## The best solution was from try 17 (random start)
## Scaling: centring, PC rotation, halfchange scaling
## Species: expanded scores based on 'Z'

plot(ord, type="n")
text(ord, dis="si", cex=0.7)
ordilabel(ord, dis="sp", priority=colSums(dune),

cex=0.8)

The species are strongly clustered by their phy-
logeny. In particularly grasses form a very compact
group, and so do major clades in Dicots (Fig. 3).
Redundancy Analysis (RDA) is based on Eu-

clidean distances, and when performed on Rao
standardized data, the analysis will be based on
phylogenetic distances among sample plots. In the
following, we use automatic procedure to build a
constrained model (Fig. 4):

m0 <- rda(Z ~ 1, dune.env)
m1 <- rda(Z ~ ., dune.env)

##
## Some constraints or conditions were aliased because they were
## redundant. This can happen if terms are linearly dependent
## (collinear): ’Manure^4’

(m <- ordistep(m0, formula(m1)))

##
## Start: Z ~ 1
##
## Df AIC F Pr(>F)
## + Management 3 -66.672 4.2149 0.005 **
## + Manure 4 -66.567 3.6309 0.005 **
## + Use 2 -61.105 1.9237 0.070 .
## + A1 1 -61.231 2.0997 0.165
## + Moisture 3 -59.765 1.4263 0.210
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Step: Z ~ Management
##
## Df AIC F Pr(>F)
## - Management 3 -61.025 4.2149 0.005 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Some constraints or conditions were aliased because they were
## redundant. This can happen if terms are linearly dependent
## (collinear): ’Manure^4’

##
## Df AIC F Pr(>F)
## + A1 1 -66.732 1.6274 0.160
## + Moisture 3 -66.028 1.3306 0.250
## + Manure 3 -65.000 1.0468 0.450
## + Use 2 -64.889 0.8206 0.575
## Call: rda(formula = Z ~ Management, data = dune.env)
##
## -- Model Summary --
##
## Inertia Proportion Rank
## Total 0.04505 1.00000
## Constrained 0.01989 0.44143 3
## Unconstrained 0.02516 0.55857 16
##
## Inertia is variance
##
## -- Eigenvalues --
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3
## 0.017111 0.002186 0.000590
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6
## 0.012086 0.008704 0.001416 0.001136 0.000673 0.000350
## PC7 PC8 PC9 PC10 PC11 PC12
## 0.000287 0.000133 0.000126 0.000097 0.000076 0.000031
## PC13 PC14 PC15 PC16
## 0.000028 0.000010 0.000007 0.000004

plot(m, scaling="sites")

The corresponding model with non-phylogenetic
Euclidean distances has somewhat higher total in-
ertia, but quite a large part of variation is also ex-
pressed by the phylogetic distances:
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Figure 4: Constrained ordination based on phylo-
genetic Euclidean distances

update(m, P ~ .)

## Call: rda(formula = P ~ Management, data = dune.env)
##
## -- Model Summary --
##
## Inertia Proportion Rank
## Total 0.08043 1.00000
## Constrained 0.02291 0.28482 3
## Unconstrained 0.05752 0.71518 16
##
## Inertia is variance
##
## -- Eigenvalues --
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3
## 0.014092 0.006611 0.002205
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6
## 0.019245 0.010710 0.006376 0.005499 0.004189 0.003009
## PC7 PC8 PC9 PC10 PC11 PC12
## 0.001979 0.001561 0.001318 0.001171 0.000943 0.000652
## PC13 PC14 PC15 PC16
## 0.000376 0.000272 0.000128 0.000093

Using explicit Rao standardization allows us to
see how the data actually looks (Fig. 5). The
displayed sample plot has only �ve species: four
grasses (Lolium perenne, Poa pratensis, Elymus

repens and Poa trivialis) and one species of Com-
positae (Achillea millefolium), and all other species
have zero abundance. Rao standardization elevates
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Original vs. Rao Standardized

Figure 5: Raw data (on the left) and Rao standard-
ized data for sample plot 1.

all grasses and also other Monocots (Eleocharis
palustre, Juncus bufonius, J. articulatus) to higher
value than the only observed Dicot A. millefolium.
The only missing species that remain at zero value
are the two bryophytes (Calliergonella cuspidata,
Brachythecium rutabulum) that are both maxi-
mally separated from the vascular plants (Fig. 1).
The standardization may sound odd, but it must be
understood that it only makes the e�ect transpar-
ent. Similar adjustment is done when phylogenetic
or functional analysis is done without explicit stan-
dardization.
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