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1 Introduction

The natto package includes function diverclust

that introduces a potentially new method of beta
and gamma diversity clustering. The idea of this
new method is obvious and I have long assumed
that such a method must have been invented previ-
ously. However, I have failed to �nd such a method,
and therefore I added the function in natto. This
document describes the method as implemented in
natto for two purposes: to explain what was done
in natto and to help �nding its predecessors.

2 The Method

2.1 The Stages of Clustering

The main steps are:

1. Initially estimate diversity of all sampling
units (�2.2).

2. First evaluate the increase in diversity when
you pool together two sampling units (option-
ally with equalization, �2.3). The increase in
diversity in pooling is conventionally called as
beta diversity.

3. Select the smallest of pooled beta diversity val-
ues and make it a cluster.

4. Pool the sampling units of the new merged
cluster by summing up abundance values
(optionally with equalization �2.3), and re-
evaluate its beta diversities with all other
units.

5. Go back to step 3 until all sampling units are
merged.

2.2 Measurement of Diversity

Diversity indices are based on proportional abun-
dances pj of for species j = 1 . . . S, where S is the
number of species. The species proportions are nor-
mally found from community matrix {xij} by di-

viding by the sum of row sums pj = xij/
∑N

i=1 xij .
The diverclust function uses vegan function
renyi to evaluate any Rényi diversity or the corre-
sponding Hill number. Rényi diversity of order a is
(Hill, 1973):

Ha =
1

1− a
log

S∑
j=1

paj , (1)

and the corresponding Hill number is Na =
exp(Ha). Many common diversity indices are spe-
cial cases of Hill numbers: N0 = S is the num-
ber of species, N1 = exp(H ′) is exponent of the

Shannon diversity, N2 = 1/
∑S

j=1 p
2
j is the Simp-

son diversity, and N∞ = 1/(max pj) is the Berger-
Parker index. The corresponding Rényi diversities
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are H0 = log(S), H1 = H ′, H2 = − log(
∑

p2j ), and
H∞ = − log(max pj).

The beta diversity is de�ned as an increase of
diversity when pooling sampling units. Pooling
is performed by summing up abundance values of
species, and the beta diversity β for a cluster of
M sampling units is de�ned as a di�erence of the
pooled gamma diversity and mean of alpha diver-
sities β = γ − ᾱ:

βa = Ha

(
M∑
i=1

xij

)
︸ ︷︷ ︸

γ

− 1

M

M∑
i=1

Ha(xij)︸ ︷︷ ︸
ᾱ

, (2)

Alternatively we can use Hill numbers Na in place
of Ha. The equation implies additive partitioning
of diversity. However, Rényi diversities are on log
scale which translates a multiplicative model into
an additive model. If you use Hill numbers in eq. 2,
the model is truly additive (cf. eqs. 11 and 12).

2.3 Equalizing Observations

The total pooled diversity (γ) in eq. 2 includes both
the within-unit diversity (α) and between-unit dif-
ferences (β). This requires that pooled diversity
really is additive: it maintains the within-unit di-
versity and adds between-unit di�erences. This
seems to be the case with Rényi diversities, but
not necessarily for the Hill numbers beyond N0 = S
(species richness). However, if the sampling units
are equalized, the additivity is greatly improved.
Equalization scales units with di�erent total abun-
dances to a more similar magnitude for pooling,
but does not in�uence their alpha diversities. The
suggested equalization is dependent on the scale a
of the Rényi diversity, and all values for a unit are
divided by weight

wi =

 S∑
j=1

xa
ij

1/a

. (3)

For a = 1 (Shannon diversity) w scales to unit sum,
for a = 2 (Simpson diversity) w scales to unit sum
of squares (norm), and for a = ∞ (Berger-Parker
diversity) w is the maximum for each sampling unit.
No equalization is needed for a = 0 (species rich-
ness).

2.4 Clustering Based on gamma Di-

versity

If we omit the ᾱ term for average alpha diversity in
eq. 2, we can base the clustering on total or gamma
diversity. It may be di�cult to see what would
be the utility of such a clustering, but perhaps it
could be used to form low-diversity classes that dif-
fer from each other.

2.5 Implementation

Function diverclust implements beta and gamma
diversity clustering as described above. The follow-
ing options can be used to modify its behaviour:

� The scale a of Rényi diversity (eq. 1) can be
given.

� The equalization of eq. 3 can be turned o� or
on.

� beta or gamma diversity clustering can be se-
lected.

� Either Rényi diversities or Hill numbers can be
selected.

The following example performs diversity clus-
tering with defaults: it uses beta diversity based on
Rényi index H1 (Shannon diversity) and equalizes
sample plots, and displays the dendrogram (Fig. 1).

data(BCI)

## row names by most abundant species

colnames(BCI) <- make.cepnames(colnames(BCI))

dom <- colnames(BCI)[apply(BCI, 1, which.max)]

rownames(BCI) <- paste0(dom, 1:50)

## diversity clustering

cl <- diverclust(BCI, trace=FALSE)

plot(cl,hang = -1, cex=0.8)

3 Other Methods

One reason for writing this vignette was to �nd out
if the diverclust function re-invents an existing
method. Information Analysis is based on very sim-
ilar reasoning as the diversity clustering (Williams
et al., 1966; Lance and Williams, 1966). To com-
pare it against diverclust, it was implemented as
function infodist in the natto package.
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Figure 1: Diversity clustering of Barro Colorado
Island forests based on H1. The sampling units are
named by their most abundant tree species.

3.1 Clustering Based on Information

Analysis

Information analysis works on binary community
data matrix. The information content I of a cluster
of M sampling units is de�ned as (Williams et al.,
1966; Lance and Williams, 1966):

I = SM logM

−
S∑

j=1

Mqj logMqj +M(1− qj) logM(1− qj) ,

(4)

where qj is the relative frequency of species j in
the M sampling units of the cluster. The contri-
bution to I is 0 for species absent from the cluster
(q = 0) and for species present on every unit in
the cluster (q = 1), and it is maximal for species
with frequency q = 0.5. The clustering minimizes
the information criterion I and therefore it tries to
produce clusters where species are either absent or
nearly absent, or constant or nearly so. This of-
ten produces clusters that are easy to interpret in
�oristic terms.

The clusters are formed similarly as in
diverclust: two sampling units or clusters are
pooled, the species frequencies are recalculated,
and the information content with the pooled group
and all other groups are re-evaluated. However,
the group selected for merging is not not the one
with lowest I, but the group that gives the low-
est increase ∆I. The information content of single
sampling units is I = 0, but formed clusters have
positive values of I, and the information values of
the members of the cluster are subtracted from the
value of the cluster, and the di�erence ∆I is used
as the criterion of clustering. The merge still hap-
pens at the level of pooled new unit I, and the
clusters are not formed in the order of their merge
heights. This con�icts with R conventions, and the
infoclust function updates the merge table to cor-
respond to the merge heights.
Williams et al. (1966) and Lance and Williams

(1966) describe their method very brie�y, and the
current implementation is natto is based on the
worked example of Legendre and Legendre (2012).
The use is similar as for diverclust:

cli <- infoclust(BCI)

plot(cli, hang=-1, cex=0.8)

The clusters are often very compact (Fig. 2), and
results di�er from the diversity clustering. Fig. 1
was based on quantitative data, but clusterings are
often very di�erent with binary data as well. In this
case, diversity clustering of binary data with Simp-
son index (N2) and equalization gave most similar
results to information clustering (Fig. 3).

library(dendextend) # tanglegram

cl2 <- diverclust(decostand(BCI, "pa"),

renyi=2, hill=TRUE, equalize=TRUE, trace=FALSE)

tanglegram(untangle(as.dendrogram(cli),

as.dendrogram(cl2), method="step2side"),

main_left="Information", main_right="Rényi 2")

3.2 Dissimilarity Indices

The diversity clustering methods can also be ex-
pressed as dissimilarity measures for two pooled
sampling units. Such dissimilarities do not pro-
duce the diversity clustering, because dissimilarities
between clusters cannot be found from dissimilari-
ties between sampling units, but the original data
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Figure 2: Information Analysis Clustering of the
Barro Colorado Island forests.
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Figure 3: Information analysis (Fig. 2) against di-
versity clustering of Simpson Index (Hill number
N2) of binary data with equalization of sample
plots. The dendrograms were rearranged to min-
imize entanglement.

must be pooled by clusters, and dissimilarites re-
evaluated from the updated community data. How-
ever, it may be instructive to compare these indices
with common dissimilarity measures. In this chap-
ter we see how the diversity measures can be ex-
pressed as dissimilarities with binary data.

The natto package includes function diverdist

that evaluates the pairwise diversity dissimilarities,
and is used in the �rst step of diversity clustering
to select �rst merged sampling units.

The diversity clustering and Rényi diversities are
principally designed for quantitative data. For
presence-absence dissimilarity indices we analyse
binary data. Binary data de�nes a community with
maximum equitability, so that all Rényi indices will
be N = logS and Hill numbers H = S irrespective
of the Rényi scale. Average alpha diversity with
Rényi (ᾱH) or Hill (ᾱN ) indices for two sampling
units eachs with S1 and S2 species is

ᾱH = 1
2 (logS1 + logS2) (5)

ᾱN = 1
2 (S1 + S2) . (6)

In two sampling units of S1 and S2 species and
J shared species, there will be S1+S2− 2J species
that occur only one of the units and each at pro-
portion p = 1

S1+S2
and J species that occur in both

sampling units at proportion p = 2
S1+S2

. The gen-
eral equation (2) of distance based on Rényi beta
diversity between two binary sampling units is:

d(Ha) =
1

1− a
[log(S1 + S2 + (2a − 2)J)

− a log(S1 + S2)]− ᾱH (7)

and the corresponding formula for Hill numbers is:

d(Na) =

[
S1 + S2 + (2a − 2)J

(S1 + S2)a

] 1
1−a

− ᾱN . (8)

Some special cases simplify into more compact
forms:
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d(H0) = log(S1 + S2 − J)− ᾱH (9)

= log

(
A+B − J√

S1S2

)
(10)

d(N0) =
1
2 (S1 + S2 − 2J) (11)

= ᾱN − J (12)

d(H1) = log(S1 + S2)−
J log 4

S1 + S2
− ᾱH (13)

d(H2) = 2 log(S1 + S2)− log(S1 + S2 + 2J)− ᾱH

(14)

d(N2) =
(S1 + S2)

2

S1 + S2 + 2J
− ᾱN (15)

d(H∞) = log(S1 + S2)− log 2− ᾱH (16)

d(N∞) = 0 . (17)

These may be regarded as �new� dissimilarity
measures, although there hardly is a de�cit of dis-
similarity indices. Simplest case is d(N0) which
is only half of the number of non-shared species,
or half of the squared Euclidean distance between
binary vectors. Most importantly, these are spe-
cial cases for binary data and two pooled sampling
units. Although the indices can be calculated for
binary data, they really are intended for quantita-
tive data. More importantly, these indices are only
used for comparing a pair of unmerged sites, and
they do not apply to comparisons involving clus-
ters.

The implicit dissimilarity measure in informa-
tion analysis is (Williams et al., 1966; Lance and
Williams, 1966):

d(I) = (S1 + S2 − 2J) log(4) . (18)

This is d(N0) with di�erent multiplier. However,
the similarity to d(N0) disappears when more than
two sampling units are compared.

Dissimilarities based on diversity or information
have been sometimes suggested. Kole� et al. (2003)
suggest the following that they ascribe to Routledge
(1984):

d(I) = log(S1 + S2)−
J log 4

S1 + S2

− S1

S1 + S2
logS1 −

S2

S1 + S2
logS2 . (19)

The formulation was based on Kole� et al. (2003)
who adapted it to binary data, and it was fur-
ther rearranged to emphasize its resemblance to
our d(H1) (eq. 13). The only di�erence is that
d(H1) uses unweighted average alpha diversity ᾱH

(eq. 5), whereas eq. 19 weights sampling units by
their species richness values. Using equalized pool-
ing of binary data produces dissimilarities that are
even more similar to this index.
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