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1 Gaussian response model
The Gaussian response model for a single species and a single gradient is defined
as (Fig. 1)

µi = h exp

[
− (xi − u)2

2t2

]
, (1)

where µi is the fitted value for SU i, xi is the gradient value, and h, u and
t are the response parameters of the species: h is the maximum height of the

Gradient x

R
es

po
ns

e
µ

h

u

t

u− tu− 2t

h

he−1/2

he−2

Figure 1: Gaussian response function of eq. (1).
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response, u is the location of the optimum where µ = h is obtained, and t is the
width or tolerance of the response.

The Gaussian response can be re-parametrized as a generalized linear model

g(µi) = a+ bxi + cx2i , (2)

which is equal to the Gaussian model of eq. (1) if c < 0. In this model, a, b
and c are species parameters and g(·) is a link function. For Gaussian response,
the link function should be g = log so that the inverse link is g−1 = exp. In
practice, binomial models are normally fitted with logistic link function which
does not strictly define a Gaussian response, but is still treated similary as log
link.

Polynomial form eq. (2) is a re-parametrization of the original Gaussian
eq. 1, and the orginal Gaussian parameters can be found from the polynomial
coefficients (provided that c < 0):

t =

√
− 1

2c
(3)

u = − b

2c
= bt2 (4)

g(h) = a− b2

4c
= a+ 0.5b2t2 . (5)

If we scale x “in sd units” so that t = 1 (and hence c = −0.5), eq. (2) becomes

g(µi) = a+ bxi − 0.5x2i . (6)

With this scaling, t = 1, u = b and g(h) = a + 0.5b2. Curiously, the unimodal
optima u are expressed as linear coefficients b – something we discussed with
Cajo ter Braak’s new electronic paper on CA. In Cajo’s paper that was approx-
imate, but here the correspondence is exact since we defined that species have
unit response widths t = 1.

2 Gaussian Ordination
In usual model fitting with Gaussian responses, we regard gradient values xi
as known, and estimate the species parameters so that fitted values µi are as
similar to observed values yi as possible. In Maximum Likelihood estimation
the fitted species parameters are estimated to maximize the likelihood of fitted
values µi given data yi and xi. In Gaussian Ordination we select xi and species
parameters so that fitted values µi will maximize the likelihood function given
data yi (and the model).

We generalize eq. 6 with fixed t = 1 for several species j and several k
gradients:

g(µij) = aj − 0.5
∑
k

x2ki +
∑
k

bkjxki . (7)

All terms (aj , bkj and xki) are model parameters which are estimated to maxi-
mize the likelihood of fitted values µij given data yij . The first terms aj define
the scale or height for each species, second terms −0.5x2ki scale each gradient
to unit tolerance, and the last terms bkjxki define the relationship between the
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species and the gradients. These last ones are the terms of interest: bkj are
the locations of optima u for species on each gradient, and xki are the gradient
values.

2.1 Details of implementation
Equation (7) can be solved with non-linear minization of log-likelihood or de-
viance function. With a n × m data matrix and k ordination dimensions,
there are m parameters a, km parameters b and kn parameters x or altogether
m+ k(m+ n) parameters which can be a large number.

There are two obvious alternative ways of estimating the model:

1. Only ordination dimensions x are found by non-linear minimization, and
the species parameters a and b are found conditionally to the current iter-
ate of x using GLM. The disadvantages of the strategy is that evaluation
of the function is very expensive, because full GLM iteration is performed
for every choice of x, and function may be evaluated hundreds of times
in every iteration step. Further, it may be that sometimes function is
trapped because species parameters adapt to the current estimates of x
and prevent changing x. This is apparent as stopping because steplength
is too short. Analysis of a 24× 28 data set used below took nearly 400 sec
in a 1.6GHz laptop, but used only 23 iterations.

2. All parameters are found simultaneously with non-linear minization. The
most obvious disadvantage is that the non-linear minimization problem
can be huge. However, the same data set as above took 33 sec, although
it needed 197 iterations. Large data sets can be really slow: one case
I studied was a subset of 127 most common species in 398 SUs of the
Mt. Field vegetation data whick in 2 dimensions gave 127+2×(127+398) =
1177 estimated parameters, and it took days to run this analysis in a
1.6GHz laptop.

I have implemented both alternatives although the main development branch is
based on the second alternative, and this paper only uses the second alternative.
In tests, both approaches gave similar results for one dimension.

Non-linear minimization needs starting values, and because problem is large,
they should be rather good. I have used site scores of detrended correspondence
analysis as a starting values for x, and coefficients of the corresponding GLM
(eq. 6) fit for species parameters a and b. A commonly held conjecture is that if
all species have Gaussian responses with equal tolerances, DCA should be able
to estimate both the locations of species optima u and gradient values x related
with them. I will add an option to supply own starting values for x.

The target function to be minimized is the deviance of the model. The
current version of the function uses quasi-Binomial deviance, but there will
be other alternatives and this will be made a user choice. The Binomial model
uses logit link function so that the models are not strictly Gaussian. Other error
models to be inspected are quasi-Poisson and Normal (Gaussian distribution),
both with log link.

For effective evaluation, we need derivatives of the likelihood with respect
to the parameters. If these are not supplied, numerical derivatives will be used,
and for each parameter this means re-evaluation of the complete loss function.
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McCullagh and Nelder show that the general form of the derivate of likelihood
function l with respect to the parameter p is

∂l

∂p
=
∂l

∂θ

dθ

dµ

dµ

dη

∂η

∂p
(8)

=
W (y − µ)

VAR(µ)

dµ

dη

∂η

∂p
, (9)

where W are prior weights, y are observed values (possibly scaled by W−1),
µ are fitted values, and η are the linear predictors, and θ is the parameter of
the exponential family defining both fitted values and variances. The VAR(µ)
and dµ

dη functions are supplied by R as a part of defining the error distribution
and link function. The partial derivatives of parameters with respect to linear
predictor ∂η

∂p of eq. (2) are trivial:

∂η

∂a
= 1 ,

∂η

∂b
= x ,

∂η

∂x
= b− x . (10)

2.2 Testable models
We have ML ordination and therefore we have all ML statistical tools available.
Each model has deviance (D) which is a measure of badness of fit, and degrees
of freedom of that fit. For instance, we can inspect two models with different
number of extracted dimensions and see if the extra dimensions are significant.
Let us inspect an alternative model with deviance DA and kA dimensions and a
null model with deviance D0 and k0 dimensions, where DA ≤ D0 and kA > k0.
The significance of extra dimensions kA − k0 can be evaluated with F statistic

F(kA−k0)(m+n),mn−kA(m+n)−m =
(D0 −DA)/ [(kA − k0)(m+ n)]

DA/(mn− kA(m+ n)−m)
. (11)

A null model with no gradients (k = 0) will only estimate m coefficients for the
average of each species, and can be used as a baseline of model comparison.

Please note that the following does not define a meanigfully testable model:

g(µij) = aj − 0.5
∑
k

x2ij . (12)

This defines a model where all species have their optima u at the gradient
origin x = 0, and superficially could be regarded as a test for an overall test
that species have different optima b when compared against eq. (7). However,
the location of the origin x = 0 is arbitrary, and tests against an arbitrary
value are meaningless. The default ANOVA-style tests for GLM would use this
approach, and compare model with the the linear coefficient and fixed quadratic
coefficients to a model with only the fixed quadratic coefficient.

In principle it would be possible to get the estimates of standard errors of the
parameters, but this is not done (yet). For this, we need to use log-likelihood as a
minimized function instead of deviance (which has twice larger differences), and
ask the minimizer function to return the Hessian or the matrix of the second
derivatives. The estimates of the standard errors of the parameters are the
square roots of inverse Hessian. These standard errors could be used to display
the error variation ellipses of the ordination scores both for species and for SUs.
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2.3 Constrained Gaussian Ordination
This is a work not yet done. However, the constrained version of GO looks pretty
simple: Instead of freely estimating the gradients x in eq. (7), we estimate x as
a function of p constraining variables z

xki =
∑
p

βkpzip , (13)

and plug the estimated xki into eq. (7). This is actually an easier problem than
unconstrained GO, because we only need to estimate kp regression coefficients
(β) instead of kn gradient values, and usually p� n.

This will only give us strictly constrained scores x comparable to linear
combination (LC) scores in CCA and RDA. It may be possible to get related
scores that are estimates from species composition, and hence comparable to
WA scores in CCA/RDA. We reverse the model and ask what are the most
likely values of x giving the observed y and the current model with fixed species
parameters. This is the multivariate calibration or bioindication model that I
suggested in JVS 1 in 1991. However, I am not sure that this work consistently:
what would it give as x if similarly applied in unconstrained GO? Consistent
method should give the same x as estimated originally, but I do not believe this
will happen (but will try and see).

3 Examples
I use a current and always changing version of Gaussian Ordination in these
examples and data sets and functions from vegan package.

> library(GO)
> library(vegan)

The file GO.R contains main functions for analysis plus some support functions.
All these are under work, and they will change, in particular in their internals,
and even the user-interface is not yet stabilized. The two main analysis functions
are GO1 which implements alternate non-linear estimation of gradient values x
and GLM estimation of species parameters a, b. The user interfaces are:

> args(GO1)

function (comm, tot = max(comm), freqlim = 5, parallel = 1, trace = TRUE,
...)

NULL

> args(GO)

function (comm, k = 1, tot = max(comm), freqlim = 5, family = c("poisson",
"binomial"), far = 10, init, trace = TRUE, ...)

NULL

Both of these functions share some arguments:

• comm: The community data frame.

• tot: Binomial denominator.
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• freqlim: Frequency (number of occurrences) of rarest species to be anal-
ysed. k + 1 parameters are fitted for each species, and therefore we need
some minimal data for estimation.

Function GO1 is so far implemented only for one dimension. Because it uses
the alternating non-linear and GLM fitting, it can use parallel processing in the
evaluation (parallel gives the number of desired parallel processes). Function
GO can fit multidimensional models, and parameter k gives the number of axes.
Currently k is limited to 4 axes, but there is no particularly compelling reason
to impose this limit – I only assume that things get hairier as the number of axes
increases. In addition, we can pass arguments to the minimizing function nlm
in these functions, and we shall set higher iteration limits with iterlim.

GO1 is currently only available for one dimension, and it is very slow, and
therefore we use only GO. Let us first evaluate models for one to three dimensions:

> data(varespec)
> system.time(m1 <- GO(varespec, k=1, freqlim=10, tot=100, iterlim=1000))

user system elapsed
0.085 0.004 0.107

> system.time(m2 <- GO(varespec, k=2, freqlim=10, tot=100, iterlim=1000))

user system elapsed
0.166 0.010 0.176

> system.time(m3 <- GO(varespec, k=3, freqlim=10, tot=100, iterlim=1000))

user system elapsed
0.140 0.005 0.146

I have written some method functions that can be used with the result:

> methods(class="GO")

[1] anova calibrate plot predict print
see '?methods' for accessing help and source code

For instance, there is a print method so that we get a brief overview of the
result (and typing the name of the object implicitly calls print):

> m1

Gaussian Ordination with 1 dimension
Call: GO(comm = varespec, k = 1, tot = 100, freqlim = 10,
iterlim = 1000)

202 iterations (converged)

Family quasipoisson
Deviance Proportion Df

Null 3222.0000 644
Model 1720.0000 0.5339 52
Residual 1502.0000 0.4661 592

> m2
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Gaussian Ordination with 2 dimensions
Call: GO(comm = varespec, k = 2, tot = 100, freqlim = 10,
iterlim = 1000)

581 iterations (converged)

Family quasipoisson
Deviance Proportion Df

Null 3222.0000 644
Model 2539.0000 0.7881 104
Residual 683.0000 0.2119 540

> m3

Gaussian Ordination with 3 dimensions
Call: GO(comm = varespec, k = 3, tot = 100, freqlim = 10,
iterlim = 1000)

291 iterations (perhaps a local minimum)

Family quasipoisson
Deviance Proportion Df

Null 3222.0000 644
Model 2869.0000 0.8906 156
Residual 353.0000 0.1094 488

The print gives a brief overview of the result object, e.g., the astonishingly
high proportions of deviance explained by each ordination. In fact, the result
object contains a large number of components which are not displayed, but can
be used by other functions:

> names(m2)

[1] "deviance" "null.deviance" "k" "iterations"
[5] "code" "rank" "df.residual" "df.null"
[9] "gradient" "points" "species" "b0"

[13] "fitted" "y" "spdev" "null.spdev"
[17] "family" "call"

The main results are SU scores (points, xik) and species scores (species, bjk
which give the optima; the constants aj are saved in item b0). The result object
was constructed so that several standard R functions can extract the results.
Moreover, vegan function scores can extract species and site scores and many
standard vegan functions can handle the result and we do not need to write
new functions or interfaces; some examples we will see here are functions are
ordiplot, enfvit, ordisurf, procrustes.

I have made a specific plot function that displays the responses against
gradients (Fig. 2).

> plot(m1, label = TRUE)

For multi-axis models this will display a line through origin with other gradients
set to zero. It can optionally show the marginal model where the height of the
curve would be the same on all gradients, but the default is a gradient line
through the origin.

For a classical ordination plot, we can use vegan ordiplot function that is
able to handle GO results (Fig. 2).
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Figure 2: One-dimensional Gaussian Ordination. a Dedicated plot function of
GO showing fitted Gaussian responses against the gradient. b Standard vegan
ordination plot (ordiplot) which for one-axis models defaults to a stacked line.

> ordiplot(m1)

Function ordiplot displays one-axis results with a vegan linestack function.
With more axes, the default is to show ordination plots of both species and sites
(Fig. 3)

> ordiplot(m2, type="t")

> ordiplot(m2, display="si")

Low-dimensional solution is not a subspace in higher dimensions. We cannot
add new dimensions to existing solutions, but ordination for each dimensionality
must be found separately. In this respect GO and NMDS are similar. We can see
this by fitting surface of one-dimensional solution onto two-dimensional solution
(Fig. 4).

> ordisurf(m2 ~ scores(m1), bubble=3)

Family: gaussian
Link function: identity

Formula:
y ~ s(x1, x2, k = 10, bs = "tp", fx = FALSE)

Estimated degrees of freedom:
8.17 total = 9.17

REML score: -13.11604

> plot(envfit(m2 ~ scores(m1)), label="Dim1")

As you see, vegan functions ordisurf, envfit and scores are can handle GO
results.
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Figure 3: Two-dimensional Gaussian Ordination. a Species optima and gradient
positions of SUs. b Only SUs.
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(b) NMDS

Figure 5: Procrustes rotation of 2-dimension Gaussian ordination (dots) vs
(a) Detrended Correspondence Analysis and (b) Nonmetric Multidimensional
Scaling (arrow heads).

3.1 Other methods
I will not launch any large scale comparison nor simulations. However, it may
be good to peek how GO results compare with other methods: are they more
or less similar or something completely different. I have used DCA solution as
the initial values, and it has been claimed to approximate GO ML ordination –
provided all species have t = 1, equal heights and their optima (u = b) are
evenly distributed along the gradients. GO used only species with frequency of
≥ 10 and we shall analyse the same subset.

> v10 <- varespec[, colSums(varespec>0) >= 10]
> ord <- decorana(v10)
> p1 <- procrustes(m2, ord, choices = 1:2)
> p1

Call:
procrustes(X = m2, Y = ord, choices = 1:2)

Procrustes sum of squares:
5.804

> plot(p1, to.target = FALSE, main="")

The vegan metaMDS standardizes data by default, and this seems to have a
large effect with these data. Therefore we turn off autotransform to analyse
non-transformed data, but still use the default Bray-Curtis index.

> nm <- metaMDS(v10, autotransform = FALSE, trace = FALSE)
> p2 <- procrustes(m2, nm)
> p2

Call:
procrustes(X = m2, Y = nm)
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Figure 6: Gaussian ordination axis with species fitted with t = 1 (solid lines)
and allowing freely varying t or even non-unimodal responses.

Procrustes sum of squares:
2.344

> plot(p2, to.target=FALSE, main="")

The goodness of fit is measured in the units of the target, and the analyses are
comparable. NMDS is clearly much more similar to GO than DCA, although
DCA was used as the starting configuration in GO.

3.2 Fixed tolerance and free shapes
I defined the species richnesses to have strictly equal tolerances t = 1. This
does not mean that such responses really are the best ones for the gradient.
In the following we fit similar second degree polynomials to all species without
restricting the second degree coefficient, and plot the results over the canonical
fit (Fig. 6):

> ## take the same subset of species as used in GO
> v10 <- varespec[, colSums(varespec>0) >= 10]
> ## the gradient
> ax <- drop(scores(m1))
> ## fit free quadratic quasibinomial GLMs
> mods <- lapply(v10, function(y) glm(cbind(y, 100-y) ~ ax + I(ax^2),

family=quasibinomial))
> ## predict values
> predx <- seq(min(ax), max(ax), len=101)
> fits <- sapply(mods, function(z) predict(z, type="response",

newdata=data.frame(ax=predx)))
> ## plot
> plot(m1)
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> matlines(predx, fits, lty=3)
> legend("topright", c("Fit with t=1", "Fit with free t"), lty=c(1,3), col=3)

The widths of Gaussian responses differ from t = 1 although this was imposed
in fitting:

> b <- sapply(mods, coef)
> rownames(b)

[1] "(Intercept)" "ax" "I(ax^2)"

> sqrt(-1/2/b[3,])

Callvulg Empenigr Vaccmyrt Vaccviti Pinusylv Dicrsp Dicrfusc
0.7254827 1.3882211 0.8576824 1.9786425 NaN NaN 0.6719134
Dicrpoly Pleuschr Polyjuni Pohlnuta Ptilcili Cladarbu Cladrang

NaN 1.7164453 NaN NaN 0.3583347 0.6572941 0.7694068
Cladstel Cladunci Cladcocc Cladcorn Cladgrac Cladfimb Cladcris

NaN 1.0294857 2.3970277 1.2404757 1.5549357 1.7469474 0.7523328
Cladchlo Cladsp Cetreric Cetrisla Flavniva Stersp Claddefo

NaN NaN NaN NaN 0.1334308 0.5075505 0.6494483

The NaN cases had quadratic coefficient > 0 which define a non-unimodal re-
sponse. Surprisingly, even Cla.ste is among those non-unimodal species, al-
though chapter 3.4 will show it to be most important driver of the ordination
axis. It seems that it would like to shoot up even more strongly than the re-
stricted Gaussian allows. Even with unimodal species, the best fitting widths
deviate from theoretical (and fitted) t = 1. The difference is significant, al-
though only barely so compared to astronomically low values in all other test
(see chapter 3.3):

> devalt <- sum(sapply(mods, deviance))
> devalt

[1] 1560.786

> deviance(m1)

[1] 1501.507

> ## we have 28 species
> dff <- 28
> dfr <- df.residual(m1)-dff
> scl <- deviance(m1)/dfr
> f <- (deviance(m1) - devalt)/dff/scl
> f

[1] -0.7952421

> pf(f, dff, dfr, lower.tail = FALSE)

[1] 1

3.3 Tests
We fit ML models which are special cases of GLM, and therefore we can perform
all typical tests. I have packed basic ANOVA as a separate function. An overall
test of the fitted model is

> anova(m2)
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Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 644 3221.5
Model 104 2538.9 540 682.6 19.311 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The significances are very high (that is, P -values are low). The degrees of
freedom take into account that the gradient also is estimated, but the tests still
are biased. We have selected x to minimize residual deviance and maximize
F statistics. I do not know yet how to develop more correct tests. Simple
permutation is out of question due to slow calculation times.

The above tests gave the overall statistic for the whole multidimensional
model. The packaged anova function allows testing a sequence of models for
their difference. Comparison of m2 against m1 tests the significance of adding sec-
ond axis to a one-axis model. Let us first see the significance of one-dimensional
ordination:

> anova(m1)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 644 3221.5
Model 52 1720 592 1501.5 13.041 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Then we can see how adding dimensions improves the results:

> anova(m1, m2, m3)

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 592 1501.51
2 540 682.63 52 818.87 21.7986 < 2.2e-16 ***
3 488 352.54 52 330.10 8.7872 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

3.4 Contributions by species
This chapter is for those who complain that ordination tells us nothing about
species.

The deviance of the model is the sum of deviances of individual species. This
test is even more approximate than previous since we cannot take into account
that the gradient x was estimated to minimize the sum of deviances over all
species. The degrees of freedom are based only on species parameters1 The
canned test procedure for species is called spanodev (I know, this is an ugly
name). It can be called with one model and in that case the overall model is
compared against the null model. Alternatively, the function can be called with
two models (but not with more models), and then these are compared against
each other.

Let us see first how one dimension “explains” each species:
1I could take the residual d.f. per species from a residual d.f. of the complete model

divided by the number of species so that the estimation of row parameters x would be divided
evenly over species. This would reduce F statistics and number of d.f. and move tests to more
correct direction. The implemenation of F distribution in R accepts decimal d.f.
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> spanodev(m1)

F statistics based on (1, 21.1) degrees of freedom
Null Model Change F Pr(>F)

Callvulg 142.81 133.084 9.73 1.5456 0.2273928
Empenigr 92.74 92.272 0.47 0.1081 0.7455842
Vaccmyrt 159.44 130.776 28.66 4.6337 0.0430488 *
Vaccviti 80.33 93.935 -13.61 -3.0628 1.0000000
Pinusylv 6.31 6.148 0.16 0.5665 0.4599587
Dicrsp 176.01 25.033 150.98 127.5129 2.043e-10 ***
Dicrfusc 259.59 114.619 144.97 26.7418 3.924e-05 ***
Dicrpoly 20.32 20.581 -0.26 -0.2659 1.0000000
Pleuschr 481.50 202.917 278.58 29.0264 2.361e-05 ***
Polyjuni 38.26 33.450 4.81 3.0420 0.0956610 .
Pohlnuta 2.36 2.970 -0.61 -4.3133 1.0000000
Ptilcili 56.97 48.771 8.20 3.5537 0.0732318 .
Cladarbu 228.08 161.957 66.12 8.6317 0.0078207 **
Cladrang 291.04 160.146 130.90 17.2815 0.0004409 ***
Cladstel 905.92 59.260 846.66 302.0700 5.341e-14 ***
Cladunci 122.22 88.776 33.44 7.9647 0.0101658 *
Cladcocc 2.04 2.126 -0.09 -0.8760 1.0000000
Cladcorn 4.74 4.398 0.34 1.6250 0.2162216
Cladgrac 1.51 1.531 -0.02 -0.2997 1.0000000
Cladfimb 1.24 1.350 -0.11 -1.7602 1.0000000
Cladcris 9.17 7.378 1.79 5.1414 0.0339625 *
Cladchlo 2.54 2.380 0.16 1.4320 0.2446798
Cladsp 1.47 1.403 0.07 1.0244 0.3229115
Cetreric 5.80 6.454 -0.65 -2.1419 1.0000000
Cetrisla 4.67 4.389 0.28 1.3551 0.2573547
Flavniva 58.56 42.441 16.12 8.0312 0.0098999 **
Stersp 54.84 45.908 8.93 4.1117 0.0553759 .
Claddefo 11.03 7.053 3.97 11.9104 0.0023748 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

It is remarkable how unevenly species contribute to the model fit, and some
species are actually more poorly explained by the model than the Null of con-
stant abundance. One single species (Cla.ste, Cladina stellaris) contributes
more than half of the modelled deviance. The situation is similar as in non-
scaled PCA where species with large variance are the only worth explaining.
Some weight equalizing trick should be developed. However, Cladina stellaris
is an important species and probably also a keystone species which many other
species depend on. Moreover, the major external driver in these data is rein-
deer grazing which reduces the C. stellaris cover drastically. We cannot say
that method fails if it picks up this species.

Then we can see how adding second axis improves fits for each species:

> spanodev(m1, m2)

F statistics based on (1, 19.3) degrees of freedom
Model1 Model2 Change F Pr(>F)

1 133.084 47.208 85.875 35.0822 9.951e-06 ***
2 92.272 50.821 41.450 15.7296 0.0008079 ***
3 130.776 41.494 89.282 41.4968 3.312e-06 ***
4 93.935 29.152 64.782 42.8573 2.664e-06 ***

14



5 6.148 4.495 1.654 7.0945 0.0152201 *
6 25.033 25.304 -0.271 -0.2063 1.0000000
7 114.619 52.374 62.244 22.9201 0.0001232 ***
8 20.581 11.177 9.405 16.2282 0.0007000 ***
9 202.917 85.713 117.204 26.3714 5.622e-05 ***
10 33.450 30.754 2.696 1.6904 0.2088774
11 2.970 1.914 1.055 10.6326 0.0040532 **
12 48.771 16.681 32.089 37.0990 6.945e-06 ***
13 161.957 37.414 124.543 64.1982 1.474e-07 ***
14 160.146 58.676 101.470 33.3513 1.370e-05 ***
15 59.260 55.121 4.140 1.4484 0.2433570
16 88.776 64.928 23.848 7.0835 0.0152883 *
17 2.126 1.861 0.265 2.7509 0.1133727
18 4.398 3.581 0.818 4.4045 0.0492358 *
19 1.531 1.647 -0.115 -1.3519 1.0000000
20 1.350 1.514 -0.164 -2.0896 1.0000000
21 7.378 6.769 0.609 1.7355 0.2031473
22 2.380 1.440 0.940 12.5956 0.0021040 **
23 1.403 1.434 -0.031 -0.4141 1.0000000
24 6.454 6.298 0.156 0.4774 0.4978368
25 4.389 2.333 2.056 17.0002 0.0005630 ***
26 42.441 6.402 36.038 108.5571 2.315e-09 ***
27 45.908 29.484 16.424 10.7433 0.0039009 **
28 7.053 6.643 0.410 1.1895 0.2888643
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Adding second axis picks up new important species. The explanation for Cladina
stellaris does not improve: all was explained in the first axis.

3.5 Failures
Even with limited tests, I have found cases where Gaussian Ordination seems
to fail. Sometimes it fails in an informative way, sometimes mysteriously. We
fit a Gaussian response model to the data, and if that model is not appropriate,
ordination should fail.

One such failure case are the classic Duch Dune Meadows. Actually, one
reason why I dropped developing Gaussian Ordination years ago was that I
used Dune Meadows as a test case, and regarded its failure as a failure of the
method. That also explains some arbitrary choices I made with the current
draft version: fixing tolerances to unit scale, and starting with Binomial models
with a ceiling to a response. But let us have a look at the problems:

> data(dune)
> mdu1 <- GO(dune, k=1, iterlim=1000)
> mdu1

Gaussian Ordination with 1 dimension
Call: GO(comm = dune, k = 1, iterlim = 1000)

69 iterations (perhaps a local minimum)

Family quasipoisson
Deviance Proportion Df
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Figure 7: Gaussian Ordination of Dune Meadows.

Null 944.7000 361
Model 464.5000 0.4917 39
Residual 480.2000 0.5083 322

> plot(mdu1, label=TRUE)

> ordiplot(mdu1)

The analysis did not converge, and the results are surprising (Fig. 7). SUs
are polarized in two groups very far away from each other. It seems that GO
thinks that there really is no continuous gradient. Most species have their
optima in the empty middle region of the axis, and species are almost sure
to occur in SUs that do not exist, since all SUs are somewhere else than the
species optima (Fig. 7). There is no penalty of fitting any values for areas
with no data. The problem was the same in earlier implementation years ago
when I used quasi-Poisson models that shot up to the sky. I now switched
to quasi-Binomial to avoid this, but it had no effect. The fit is evaluated at
data points, and if there are no points, you can do anything with no penalty.
I have feeling that most species are ubiquitous, but there is one species of dry
patches (Anthoxanthum odoratum), and some species of wet patches (Agrostis
stolonifera, Juncus articulatus, Ranunculus flammula, Eleocharis palustris). I
used the term “patches” because it may be that whole plot is not dry or wet,
but it has a dry (hummock) or a wet (depression) patch in addition to normal
flat ground with its ubiquitous species.

I think Dune Meadows deserves to fail, and a method should fail if its strict
assumptions are not appropriate. Preferably it should fail loudly, which was not
the case now. Naturally, such a method is not robust, but should ML GO be
robust? Isn’t it Maximum Likelihood? Isn’t it Gaussian? If data are not such,
no ML GO should work. . . However, there is another case which seems to fail,
and this is more problematic since here the method should have worked: GO of
Mt. Field.

I intended to send you brief overview of my experiments last Sunday, but

16



−1 0 1 2 3

−
3

−
2

−
1

0

Dim1

D
im

2

F41F42

G38

F40F43

E.6

F35
F39G30F37

F38

G36

G32

F34 F36
F26

G33G34

G39

E20E21

G29

D25
D26

D27 F27D28
E19 F25D24

D29

E.4

E22

F28

D23 E23

F45G40

E18 F32
C26C28D30

E.3

E24
F24 F29

F31

G17

G18

F10 F30

G16

C25D22

G15

G28

G41

C29
C24D31D32

E.2
E06

E25

E27

F11

F23

G14
G42

G43

F09

C30D21

E05
E07

E16 E26

E28

G13

G19

B22

C23 C31
D20

D33

E.1

E04

E08

F08

F22 F13

D14

D15D19

E00

E03

E09

E15

G12

G44

B21
B23

D16 D18

G20

C22
C32

D13

D17

E02

E29

F07

F14
F21

G21

G27

D34

E14

G11

G22

B20

B24

C21

D12

E01

E10

F15

F20
F46

G23

D11

G24

G26
B19C20

C33

E13

E30

F16

F19

G25

G10

A04

B18

B25

C19

D09

D35

E11

E12

F06

F18
C18

A06

A07

B03 B05

B17

C11 C12

C17

D08

E42 F17

B16

C10C16

G09

A05

A08

A09

B01

B02

B15

C01

C09

C15

D01

D07

E41

G45

B14

C08
A10

B13

B26

C02

C07

C13

C14 E31

B11

B12

D06

F05

A13

A14

A15
A16

B07

B08

B09

B10

C03
C04

C05

C06

C34

D02

E40

A17

D05

D36

E43

G47

A18

B27

D04

E32

E39

A19

A20

E37

E38

F04
G48

G54
A21

E33
G49

G51

G52

G55 A22

E34

E36

G06

K01
P01

Q01

Q05

A23

F01

G50

G53

Q06
B28

C35

F03

Q03

Q04
G05

D37

E44
F02

Q07

G01

E35

F47

F48
G03

P03
G02

M11

Q02

C36

C38

C39

E45
H01

K02
M01

M10

N01

N02

O01

B29 I01

M09

C37

D38

M08

M02

M07

C40

M06

M12

O03

P04

Q08

H02

M03

B31

C41

D39

F49I02

K03 L01

M04

M05

N03
I03

I04

K04

M13

C42

C43

C44

C45

H03

H10

H11

I05

I06

I07

I08

J01

J02

J03

J04

L02

L06

D40

H09

I09

J05

J06

J07

K05

K06

L05

L07

L13
B32

B37

D41

D42

D43

H08

I10

K07

K08

K09

L03

L04 L08

P05

B35

B36
D44

H07
I11

I12

K10

K12

L09

L11

M16

B33D45

H06

L10

D46

H04

K11

B34

D47

D48
F50

M14E46

H05

O04
G59

M15
P06

Q12

N04F51

G60

E47

O05

F52
N05

F53

O06

P07P09

P10

Q13

Q14

F54

N06

O07

P08
G61

ALTITUDE

DRAINAGE

RF.CO.CO

Figure 8: Two-dimensionsl Gaussian Ordination of the Mt. Field data.

then light mindedly decided to also run a GO on the full Mt. Field data set:
all 398 SUs, but only 127 most common species (frequency≥ 10). My 1.6GHz
laptop finished the analysis on Tuesday evening, and I closed the lid only when
we drove from Tuusniemi to Oulu and when I rode to job on my bicycle. It
took well over 50 hrs, and then it ended in a local optimum after 952 iterations.
I had expected a clean result, but it looks strange (Fig. 8). Fitted vectors look
OK: Altitude R2 = 0.8427 vs. R2 = 0.8336 and Drainage R2 = 0.7579 vs.
R2 = 0.7610 in NMDS with the same subset of species. Moreover, Procrustes
analysis hints that this has changed from the starting configuration of DCA,
since Procrustes errors are smaller against NMDS than DCA. However, there
are these strange straight lines that close the points in a kind of convex polygon
which indicates that there is something fishy in the result. I do not know what
that could be, but it does not smell success.
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